

Antibody Phage Display Library Construction Kit

pAPD-V_HH: camelid V_HH phage display library construction kit

Catalog#: APD-08

Product Overview

Fusion BioLabs offers a range of library primer sets and phagemid vector combination for antibody phage display and peptide phage display construction. With customizable features and robust performance, our primer sets and phagemid vectors are designed for facilitating phage display library generation as fast as within one week.

pAPD-VHH is a phagemid vector for construction of variable domain of the heavy chain of a heavy chain only antibody (V_HH) library. Here are the key steps involved in constructing such a library:

- Amplify V_HH repertoires from cDNA reverse transcript from RNA isolated from peripheral blood lymphocytes (PBL) or lymphoid tissue of non-immunized or immunized donors using PCR Primer Set.
- Restriction enzyme digestion **pAPD-VHH** vector and VHH repertoires with Ncol/Notl.
- Ligation of digested and purified VHH repertoires into digested and purified **pAPD-VHH** vector to make VHH libraries.

Key Features

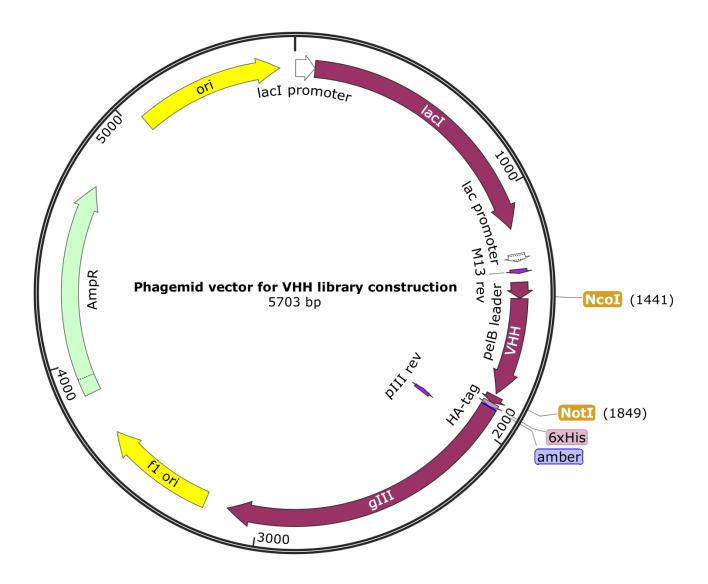
High expression efficiency: Engineered for efficient expression and display of camelid VHH on the surface, allowing for easy screening and selection of target molecules.

Flexibility and versatility: One vector for both antibody library construction and downstream antibody fragment expression. No need subcloning into expression vector for downstream application.

Specifications

Antibiotic Resistance	Ampicillin (Amp ^R)
Constitutive or Inducible System	Inducible for downstream expression
Delivery Type	Transformation
Product Type	Bacterial Expression Vector
Cloning Method	Restriction Enzyme Ncol/Notl

Contents & Storage


Primer set for amplification of camelid heavy chain antibody (V _H H) repertoires				
100 µl, 10 µM	Forward (4 oligos) and reverse primer (2 oligos) mix for $V_H H$			
	fragment amplification (normalized concentration)			
Sequencing primer set				
100 µl, 10 µM	M13 Reverse primer for VHH forward sequencing			
	100 µl, 10 µM primer set			

Vial 3	100 µl, 10 µM	pIII Reverse primer for VHH reverse sequencing	
pAPD-VHH cloning vector for phage display VHH library construction			
Vial 4	10.0 µg in Tris-EDTA buffer		

• Store at -20°C. Primer sets and vectors are guaranteed stable for 12 months when properly stored.

Vector for library Construction

Protocols

- 1. PCR amplification of the V_H H repertoires using following condition.
 - Primer mix set and total PCR reaction volume

PCR amplification	Primer mix set	Volume
V _H H repertoires	Vial 1	1.0 ml (100 µl /rxn x 10 rxns)

- Component Amount **PCR Protocol** 10 x PCR buffer, -Mg²⁺ 10 µl Initial denaturation 94°C for 2 min 94°C for 30 sec 50 mM MgCl^2 3μl Denature 30 10 mM dNTPs 2 µl Anneal 55°C for 45 sec PCR cycles 10 µM Primer mix (F+R) 72°C for 90 sec 4 µl Extend cDNA template (500-8000 ng/µl) Final Extension 1 µl 72°C for 10 min Tag DNA Polymerase (10 units/µl) 4°C, indefinitely 0.4 µl Hold Water, nuclease-free 79.6 µl Note: Recommended for our PCR condition. Optimization maybe needed.
- PCR setup and PCR protocol

- Combine $V_H H$ repertoires reaction in 2.0 ml nuclease-free tube.
- Add gel loading buffer to the tube, mix, and briefly centrifuge the contents.
- Run the sample on a 1.0% agarose gel and an appropriate molecular weight marker. *Expect results:* ~400-450 bp for V_HH repertoires.
- Cut out the correct-size bands, and purify the DNA using any commercial gel DNA extraction kit.
- Quantitate yields using a NanoDrop Spectrophotometer at 260 nm Expect results: Approximately 10-15 μg V_HH repertoires. If yields are too low, repeat the PCR and combine the end product for the repertoire.
- Restriction digestion of V_HH repertoires and **pAPD-VHH** cloning vectors by double enzymes Ncol/NotI at 37°C for overnight or 6 h.

Components	V _H H repertoires	pAPD-VHH vectors
DNA	10 µg	10 µg
10X digestion buffer	20 µl	20 µl
Ncol (20 units/µl)	10 µl	10 µl
Notl (20 units/µl)	10 µl	10 µl
Water, nuclease-free	to 200 µl	to 200 µl

• Add gel loading buffer to each tube, mix, and briefly centrifuge the contents.

- Run the sample on a 1% agarose gel and an appropriate molecular weight marker. *Expect results:* ~400-430 bp for digested V_HH repertoires, and ~5300 bp for digested pAPD-VHH vector backbone.
- Cut out the correct-size bands, and purify the DNA using any commercial gel DNA extraction kit.
- Quantitate yields using a NanoDrop Spectrophotometer at 260 nm *Expect results: At least 1-4 μg of each purified V_HH repertoire or digested pAPD-VHH vector backbone.*
- 3. Library ligation using T4 DNA ligase

Components	200 µl reaction
T4 DNA Ligase Buffer (10X)*	20 µl
Digested pAPD-VHH	2.5 µg
Digested V _H H repertoires	1.5 µg
T4 DNA Ligase (20 units/µl)	5.0 µl
Water, nuclease-free	to 200 µl

^{*}The T4 DNA Ligase Buffer should be thawed and resuspended at room temperature.

- Gently mix the reaction by pipetting up and down and microfuge briefly.
- Incubate overnight at room temperature.
- Heat inactivate at 65°C for 10 minutes.
- Purify the ligated samples and dissolve in 50 µl nuclease-free water.
- Transform 2 μ l of purified ligation samples into 25 μ l tube with TG1 electrocompetent cells (efficiency should be >4 x 10¹⁰ cfu/ μ g of plasmid DNA) for 2 min.
- Transfer the mix to electroporation cuvette (0.1 cm gap) and electroporate at 1.8 kV, 10 µF and 600 Ohms. Typical time constants are 3.5 to 4.5 msec for successful electroporation. There are around 25 electroporation in total needed to be done individually.
- 4. Proceed with the phage library preparation and panning.