

Fusion BioLabs Short Protocol for Human Fab Phage Display Library Construction Kit

pAPD-h-Fab: Human Fab phage display library construction kit

Catalog#: APD-02

Product Overview

Fusion BioLabs offers a range of library primer sets and phagemid vector combination for antibody phage display and peptide phage display construction. With customizable features and robust performance, our primer sets and phagemid vectors are designed for facilitating phage display library generation as fast as within one week.

pAPD-h-Fab are the phagemid vectors for construction of a fragment antigen-binding (Fab) library for **human** antibodies. Here are the key steps involved in constructing such a library:

- Amplify V genes from cDNA reverse transcript from RNA isolated from peripheral blood lymphocytes (PBL) or lymphoid tissue of non-immunized or immunized donors using PCR primers corresponding to known V_H, V_κ, and V_λ gene sequences.
- Amplify CH1 fragment, Ck fragment and Cλ fragment using pAPD-h-Fab as template.
- Combine VH repertoires and CH1 fragment, Vk repertoires and Ck fragment, and V_{λ} repertoires and C_{λ} fragment to create $V_{H^{-}}C_{H^{-}}$, $V_{k^{-}}C_{k}$ and $V_{\lambda^{-}}C_{\lambda}$ constructs respectively, using a simple two-fragment PCR assembly procedure.
- Overlap assembly V_k - C_k and V_H - C_{H1} , and V_{λ} - C_{λ} and V_H - C_{H1} to make Fab repertoires respectively.
- Restriction enzyme digestion pAPD-h-Fab vector and Fab repertoires with Sfil.
- Ligation of digested and purified repertoires into digested and purified pAPD-h-Fab vector to make human Fab libraries.

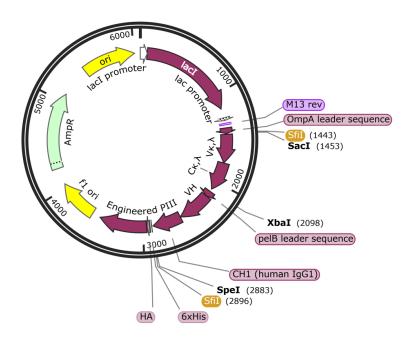
Key Features

High expression efficiency: Engineered for efficient expression and display of antibody fragment Fab on the surface, allowing for easy screening and selection of target molecules.

Flexibility and versatility: One vector for both antibody library construction and downstream antibody fragment expression. No need subcloning into expression vector for downstream application.

Specifications

Antibiotic Resistance	Ampicillin (Amp ^R)
Constitutive or Inducible System	Inducible for downstream expression
Delivery Type	Transformation
Product Type	Bacterial Expression Vector
Cloning Method	Restriction Enzyme Sfil



Contents & Storage

Primer Set			
Vial 1	200 μΙ, 10 μΜ	Primer mix (F+R) for V _H repertoires amplification	
Vial 2	200 μΙ, 10 μΜ	Primer mix (F+R) for V _k repertoires amplification	
Vial 3	200 μΙ, 10 μΜ	Primer mix (F+R) for V _λ repertoires amplification	
Vial 4	200 μΙ, 10 μΜ	Primer mix (F+R) for CH1 fragment amplification	
Vial 5	200 μΙ, 10 μΜ	Primer mix (F+R) for C _k fragment amplification	
Vial 6	200 μΙ, 10 μΜ	Primer mix (F+R) for C _λ fragment amplification	
Vial 7	200 μΙ, 10 μΜ	Assembly primers for V _H -C _{H1} repertoires construction	
Vial 8	200 μΙ, 10 μΜ	Assembly primers for V _k -C _k repertoires construction	
Vial 9	200 μΙ, 10 μΜ	Assembly primers for V_{λ} - C_{λ} repertoires construction	
Vial 10	200 μΙ, 10 μΜ	Assembly primers for Fab repertoires construction	
pAPD-h-Fab cloning vectors for human Fab library construction and templates for CH1, C_k and C_λ fragment amplification			
Vial 11	Vial 11 10.0 μg in Tris-EDTA buffer		

• Store at -20°C. Primer sets and vectors are guaranteed stable for 12 months when properly stored.

Vector for library Construction

Phagemid vector for human Fab library construction

Protocols

- 1. PCR amplification of the V_H repertoires, V_k repertoires and V_λ repertoires using following condition.
 - Primer mix set and total PCR reaction volume

PCR amplification	Primer mix set	Volume
V _H repertoires	Vial 1	1.0 ml (100 µl /rxn x 10
	Viai i	rxns)
V _k repertoires	Vial 2	0.8 ml (100 µl /rxn x 8 rxns)
V _λ repertoires	Vial 3	0.8 ml (100 µl /rxn x 8 rxns)

PCR setup and PCR protocol

Component	Amount	PCR Protocol		
10 x PCR buffer, -Mg ²⁺	10 µl	Initial denaturation		94°C for 2 min
50 mM MgCl ²	3 µl		Denature	94°C for 30
				sec
10 mM dNTPs	2 µl	30	Anneal	56°C for 30
		PCR cycles		sec
10 μM Primer mix (F+R)	4 µl		Extend	72°C for 90
				sec
cDNA template (500-8000	1 µl	Final Extension 72°C for 19		72°C for 10
ng/µl)		Final Extension min		min
Taq DNA Polymerase (10	0.4 µl	Hold 4°C,		4°C,
units/µI)		indefinite		indefinitely
Water, nuclease-free	79.6 µl	Note: Recommended for our PCR condition		r PCR condition.
		Optimization maybe needed.		

- Combine each repertoires reaction in 2.0 ml nuclease-free tube, respectively.
- Add gel loading buffer to each tube, mix, and briefly centrifuge the contents.
- Run the sample on a 2% agarose gel and an appropriate molecular weight marker. Expect results: 350-400 bp products for each type of repertoire.
- Cut out the correct-size bands, and purify the DNA using any commercial gel DNA extraction kit.
- Quantitate yields using a NanoDrop Spectrophotometer at 260 nm

 Expect results: Approximately 3-6 µg of each repertoire. If yields are too low, repeat the PCR and combine the end product for each type of repertoire.
- 2. PCR amplification of the human C_H1 , C_k and C_{λ} fragments using cloned human Fab vectors (Vial 11) as templates via following condition.

Primer mix set and total PCR reaction volume

PCR amplification	Primer mix set	Volume
C _H 1 fragment	Vial 4	0.6 ml (100 µl /rxn x 6 rxns)
C _k fragment	Vial 5	0.6 ml (100 µl /rxn x 6 rxns)
C _λ fragment	Vial 6	0.6 ml (100 µl /rxn x 6 rxns)

PCR setup and PCR protocol

Component	Amount	PCR Protocol		
10 x PCR buffer, -Mg ²⁺	10 µl	Initial denaturation		94°C for 2 min
50 mM MgCl ²	3 µl		Denature	94°C for 30
				sec
10 mM dNTPs	2 µl	25	Anneal	56°C for 30
		PCR cycles		sec
10 μM Primer mix (F+R)	4 µl		Extend	72°C for 60
				sec
PCR template (Vial 11, 250	0.2 µl	Final Extension 72°C for 10		72°C for 10
ng/μl)		min		min
Taq DNA Polymerase (10	0.4 µl	Hold 4°C,		4°C,
units/µI)		indefi		indefinitely
Water, nuclease-free	79.6 µl	Note: Recommended for our PCR condition		r PCR condition.
		Optimization maybe needed.		

- Combine each repertoires reaction in 2.0 ml nuclease-free tube, respectively.
- Add gel loading buffer to each tube, mix, and briefly centrifuge the contents.
- Run the sample on a 2% agarose gel and an appropriate molecular weight marker.
 Expect results: 350 bp for C_H1 fragment, 420 bp for C_k fragment and C_λ fragment.
- Cut out the correct-size bands, and purify the DNA using any commercial gel DNA extraction kit.
- Quantitate yields using a NanoDrop Spectrophotometer at 260 nm
 Expect results: Approximately 3-6 µg of each repertoire. If yields are too low, repeat the PCR and combine the end product for each type of fragment.
- 3. Overlapping Extension PCR to generate V_k - C_k -linker repertoires, V_λ - C_λ -linker repertoires, and linker- V_H - C_H 1 repertoires according to the below template combination and assembly primers.
 - Assembly primer set and total OE-PCR reaction volume

Overlapping extension PCR	Template combination	Assembly primers	Volume
-linker-VH-C _H 1 repertoires	V _H repertoires & C _H 1 fragment	Vial 7	1.0 ml (10 rxns)

V _k -C _k -linker repertoires	V _k repertoires &	Vial 8	1.0 ml (10 rxns)
	C _k fragment		
V_{λ} -C _{λ} -linker repertoires	V_{λ} repertoires & C_{λ} fragment	Vial 9	1.0 ml (10 rxns)

OE-PCR setup and PCR protocol

Component	Amount	PCR Protocol		
10 x PCR buffer, -Mg ²⁺	10 µl	Initial denaturation		94°C for 2 min
50 mM MgCl ²	3 µl		Denature	94°C for 30
-		20		sec
10 mM dNTPs	2 µl	PCR cycles	Anneal	56°C for 30
		FOIT Cycles		sec
10 μM Assembly primers	4 µl		Extend	72°C for 2 min
Template combination (100 ng	x µl	Final Extension 72°C for 10 min		72°C for 10
each)				min
Taq DNA Polymerase (10	0.4 µl	4°C,		4°C,
units/µI)		Hold indefinitely		indefinitely
Water, nuclease-free	to 100	Note: Recommended for our PCR condition.		
	μl	Optimization maybe needed.		

- Combine each repertoires reaction in 2.0 ml nuclease-free tube, respectively.
- Add gel loading buffer to each tube, mix, and briefly centrifuge the contents.
- Run the sample on a 2% agarose gel and an appropriate molecular weight marker. Expect results: ~750-800 bp for -linker-VH-C_H1 repertoires, V_k -C_k-linker repertoires and V_{λ} -C_{\u03c4}-linker repertoires products.
- Cut out the correct-size bands, and purify the DNA using any commercial gel DNA extraction kit.
- Quantitate yields using a NanoDrop Spectrophotometer at 260 nm
 Expect results: At least 2-4 µg of each repertoire. If yields are too low, repeat the overlapping extension PCR and combine the end product for each type of repertoire.
- 4. Overlapping Extension PCR to generate either Fab repertoires with kappa light chain (k-Fab repertoires: Sfi-V_k-C_k-linker-V_H-C_H1-Sfil) or Fab repertoires with lambda light chain (λ-Fab repertoires: Sfi-V_λ-C_λ-linker-V_H-C_H1-Sfil) according to the below template combination and assembly primers.
 - Assembly primer set and total OE-PCR reaction volume

Overlapping	Template combination	Assembly	Volume
extension PCR		primers	

k-Fab repertoires	V _k -C _k -linker repertoires & -linker-VH-C _H 1 repertoires	Vial 10	1.0 ml (10 rxns)
λ-Fab repertoires	V _λ -C _λ -linker repertoires & -linker-VH-C _H 1 repertoires	Vial 10	1.0 ml (10 rxns)

OE-PCR setup and PCR protocol

Component	Amount	PCR Protocol		
10 x PCR buffer, -Mg ²⁺	10 µl	Initial denaturation		94°C for 2 min
50 mM MgCl ²	3 µl	25	Denature	94°C for 30 sec
10 mM dNTPs	2 µl	PCR cycles	Anneal	56°C for 30 sec
10 μM Assembly primers	4 µl	PCR cycles	Extend	72°C for 3 min
Template combination (100 ng each)	x µl	Final Extension		72°C for 10 min
<i>Taq</i> DNA Polymerase (10 units/μl)	0.4 µl	Hold		4°C, indefinitely
Water, nuclease-free	to 100 µl	Note: Recommended for our PCR condition. Optimization maybe needed.		

- Combine each repertoires reaction in 2.0 ml nuclease-free tube, respectively.
- Add gel loading buffer to each tube, mix, and briefly centrifuge the contents.
- Run the sample on a 2% agarose gel and an appropriate molecular weight marker.
 Expect results: ~1500 bp for Fab repertoires (either k-Fab repertoires or λ-Fab repertoires) products.
- Cut out the correct-size bands, and purify the DNA using any commercial gel DNA extraction kit.
- Quantitate yields using a NanoDrop Spectrophotometer at 260 nm
 Expect results: At least 10-20 µg of each purified Fab repertoire. If yields are too low,
 repeat the overlapping extension PCR and combine the end product for each type of
 repertoire.
- 5. Restriction digestion of Fab repertoires and pAPD-h-Fab cloning vectors by Sfil at 50°C for overnight or 6 h.

Components	Fab repertoires	pAPD-h-Fab vectors
DNA	10 μg	10 µg
10X digestion buffer	20 µl	20 µl
Sfil (20 units/µl)	10 µl	10 µl
Water, nuclease-free	to 200 µl	to 200 µl

- Add gel loading buffer to each tube, mix, and briefly centrifuge the contents.
- Run the sample on a 1% agarose gel and an appropriate molecular weight marker.

Expect results: \sim 1600 bp for digested Fab repertoires (either k-Fab repertoires or λ -Fab repertoires) products, and \sim 4600 bp for digested pAPD-h-Fab vector backbone.

- Cut out the correct-size bands, and purify the DNA using any commercial gel DNA extraction kit.
- Quantitate yields using a NanoDrop Spectrophotometer at 260 nm
 Expect results: At least 1-4 μg of each purified Fab repertoire or digested pAPD-h-Fab vector backbone.

6. Library ligation using T4 DNA ligase

Components	200 µl reaction for k-Fab	200 μl reaction for λ-Fab
	library	library
T4 DNA Ligase Buffer (10X)*	20 μΙ	20 μΙ
Digested pAPD-h-Fab	1.9 µg	1.9 µg
Digested Fab repertoires	1.5 µg	1.5 µg
T4 DNA Ligase (20 units/µl)	5.0 µl	5.0 µl
Water, nuclease-free	to 200 µl	to 200 µl

^{*}The T4 DNA Ligase Buffer should be thawed and resuspended at room temperature.

- Gently mix the reaction by pipetting up and down and microfuge briefly.
- Incubate overnight at room temperature.
- Heat inactivate at 65°C for 10 minutes.
- Chill on ice and heart transform 1-5 µl of the reaction into 50 µl competent cells.
- Purify the ligated samples and dissolve in 50 µl nuclease-free water.
- Transform 2 μ l of purified ligation samples into 25 μ l tube with TG1 electrocompetent cells (efficiency should be >4 x 10¹⁰ cfu/ μ g of plasmid DNA) for 2 min.
- Transfer the mix to electroporation cuvette (0.1 cm gap) and electroporate at 1.8 kV, 10 μF and 600 Ohms. Typical time constants are 3.5 to 4.5 msec for successful electroporation.
- 7. Proceed with the phage library preparation and panning.