

CD3 Human Monoclonal Antibody

SKU: EAB-064

Recombinant human monoclonal antibody (Clone ID: OKT3), expressed in Chinese Hamster Ovary cells (CHO), is capable of strong binding to human CD3.

CD3 is a protein complex and T cell co-receptor that is involved in activating both the cytotoxic T cell and T helper cells. This antibody is a mouse recombinant monoclonal antibody that binds specifically to human CD3, and it can neutralize the bioactivity of human CD3. The antibody is directed against the CD3 antigen on human T cells.

species reactivity	human
recombinant	expressed in Chinese Hamster Ovary cells (CHO).
applications	ELISA, WB, IHC, Flow Cyt, neutralization
antibody form	affinity purified immunoglobulin
immunogen	human CD3
clone	OKT3
purity	>95% (SDS-PAGE)
form	0.015 M PBS, 0.05% NaN ₃ , pH7.2
concentration	~ 2 mg/ml
isotype	human IgG1, k
Fc-engineered	n/a; wild type Fc

• Store at -20°C. Recombinant monoclonal antibodies are guaranteed stable for 12 months when properly stored.

References:

1. Mizuno T, Kato M, Tsukui T, Igase M. Development of an in vitro assay for screening programmed death receptor-1/programmed cell death ligand 1 monoclonal antibody therapy in dogs. Vet Immunol Immunopathol. 2024, 274:110792.

2. Sayadmanesh A, Azadbakht M, Yari K, Abedelahi A, Shafaei H, Shanehbandi D, Baradaran B, Basiri M. Characterization of CAR T Cells Manufactured Using Genetically Engineered Artificial Antigen Presenting Cells. Cell J. 2023, 25(10):674-687.

3. Martin GH, Gonon A, Martin-Jeantet P, Renart-Depontieu F, Biesova Z, Cifuentes A, Mukherjee A, Thisted T, Doerner A, Campbell DO, Bourré L, van der Horst EH, Rezza A, Thiam K. Myeloid and dendritic cells enhance therapeutics-induced cytokine release syndrome features in humanized BRGSF-HIS preclinical model. Front Immunol. 2024, 15:1357716.