

Antibody Phage Display Library Construction Kit

pAPD-h/k-Fab and pAPD-h/λ-Fab: Human Fab phage display library construction kit

Catalog#: APD-02

Product Overview

Fusion BioLabs offers a range of library primer sets and phagemid vector combination for antibody phage display and peptide phage display construction. With customizable features and robust performance, our primer sets and phagemid vectors are designed for facilitating phage display library generation as fast as within one week.

pAPD-h/k-Fab and pAPD-h/λ-Fab are the phagemid vectors for construction of a fragment antigen-binding (Fab) library for **human** antibodies. Here are the key steps involved in constructing such a library:

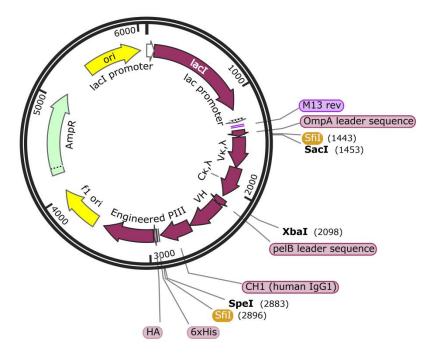
- Amplify V genes from cDNA reverse transcript from RNA isolated from peripheral blood lymphocytes (PBL) or lymphoid tissue of non-immunized or immunized donors using PCR primers corresponding to known V_H, V_κ, and V_λ gene sequences.
- Amplify CH1 fragment using either pAPD-h/k-Fab or pAPD-h/λ-Fab as template, Ck fragment using pAPD-h/k-Fab as template and Cλ fragment using pAPD-h/λ-Fab as template.
- Combine VH repertoires and CH1 fragment, and Vk,λ repertoires and Ck,λ fragment to create V_H-C_{H1} and V_{k,λ}-C_{k,λ} constructs respectively, using a simple two-fragment PCR assembly procedure.
- Overlap assembly $V_{k,\lambda}$ - $C_{k,\lambda}$ and V_H - C_{H1} to make Fab repertoires.
- Restriction enzyme digestion pAPD-h/k-Fab vector or pAPD-h/λ-Fab vector and Fab repertoires with Sfil.
- Ligation of digested and purified repertoires into digested and purified pAPD-h/k-Fab vector or pAPD-h/λ-Fab vector to make human Fab libraries.

Key Features

High expression efficiency: Engineered for efficient expression and display of antibody fragment Fab on the surface, allowing for easy screening and selection of target molecules.

Flexibility and versatility: One vector for both antibody library construction and downstream antibody fragment expression. No need subcloning into expression vector for downstream application.

Specifications		
Antibiotic Resistance	Ampicillin (Amp ^R)	
Constitutive or Inducible System	Inducible for downstream expression	
Delivery Type	Transformation	
Product Type	Bacterial Expression Vector	
Cloning Method	Restriction Enzyme Sfil	



Contents & Storage

Primer Set		
Vial 1	200 µl, 10 µM	Forward Primer mix (4 oligos) for V _k fragment amplification
Vial 2	200 µl, 10 µM	Reverse Primer for V _k fragment amplification
Vial 3	200 µl, 10 µM	Forward Primer mix (9 oligos) for V_{λ} fragment amplification
Vial 4	200 µl, 10 µM	Reverse Primer for V_{λ} fragment amplification
Vial 5	200 µl, 10 µM	Forward and reverse primer mix for C _k fragment amplification
Vial 6	200 µl, 10 µM	Forward and reverse primer mix for C_{λ} fragment amplification
Vial 7	200 µl, 10 µM	Forward and reverse primer mix for CH1 fragment amplification
Vial 8	200 µl, 10 µM	Forward and reverse primer mix for V_k - C_k fragment amplification
Vial 9	200 µl, 10 µM	Forward and reverse primer mix for V_{λ} - C_{λ} fragment amplification
Vial 10	200 µl, 10 µM	Forward and reverse primer mix for V _H -C _{H1} fragment amplification
Vial 11	200 µl, 10 µM	Forward and reverse primer mix for Fab fragment amplification
pAPD-h/k-Fab and pAPD-h/λ-Fab cloning vector for phage display human Fab library construction		
Vial 12	10.0 µg in Tris-EDTA buffer	

• Store at -20°C. Primer sets and vectors are guaranteed stable for 12 months when properly stored.

Vector for library Construction

Phagemid vector for human Fab library construction 6069 bp